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Principal component analysis (PCA) and linear discriminant analysis (LDA) were used to classify
187 Hungarian white and red wines according to wine-making technology, geographic origin (wine-
making region), grape variety, and year of vintage based on free amino acid and biogenic amine
contents. Determination of free amino acids and biogenic amines was accomplished by ion-exchange
chromatography. Six principal components accounted for >77% of the total variance in the data.
The plots of component loadings showed significant groupings of free amino acids and biogenic
amines. The component scores grouped according to wines made by different wine-making
technologies. Using LDA the variables with a major discriminant capacity were determined. Almost
complete classification (94.7%) was achieved concerning both white and red wines and wines made
by different wine-making technologies. The results of differentiation between white wines according
to geographic origin, grape variety, and year of vintage were 70.8, 62.4, and 73.5%, respectively.
The same numbers for red wines according to geographic origin, grape variety, and year of vintage
were 64.9, 71.6, and 82.4%, respectively.
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INTRODUCTION

Nitrogen in amino acids represents 30-40% of the total wine
nitrogen. Amino acids, present in grape must, are used as
nutrients for yeast and bacterial growth as they are consumed
as a nitrogen source during fermentation (1, 2). Amounts of
amino acids depend on the grape variety, region, year of vintage,
and different wine-making technologies (3).

Biogenic amines are present in grape must and are also
formed during fermentation with decarboxylation of free amino
acids (4). The polyamines (agmatine, spermine, and spermidine)
are beneficial for health, but consumption of foods and
beverages rich in some amines (histamine, tyramine, putrescine,
and cadaverine) may cause inconvenient symptoms, such as
nausea, sweating, and respiratory distress (5). The interaction
between ethanol and amines seems to be synergetic; hence, their
study in wines has great importance.

Different chemometric procedures have already been applied
to establish wine authenticity and criteria for differentiation (6,
7).

Vasconcelos et al. (8) studied the free amino acid composition
of four white and four red wine varieties from Portugal over a
seven year period. All of the varieties were grown in the same

vineyard, and the wines were made under identical conditions.
The data were treated by cluster analysis (CA), principal
component analysis (PCA), and discriminant analysis (DA). The
red and white wines were distinguished using these techniques,
and the free amino acid compositions of wines were correlated
to the corresponding grape varieties.

Etiévant et al. (9) analyzed French red wines from three
regions and six varieties for amino acids, ethanolamine, total
nitrogen content, and aromatic alcohols. PCA demonstrated that
the concentration of most amino acids was mainly affected by
the technology used in wine production. According to varieties
the wines were divided only into two groups. There were clear
differences between wines according to the latitude of the
production area.

Soufleros et al. (1) studied Greek white wines from seven
grape varieties, six geographic regions, and three vintages for
their amino acids. Using DA the amino acid profiles have been
useful in the classification of wines according to variety,
geographic origin, and vintage, too.

In another study, Soufleros et al. (10) used PCA to classify
French wines of four various regions according to their sort
and origin by analysis of amino acids, biogenic amines, volatile
compounds, and organic acids. Liquor wines, which were made
from botrytized grapes, formed a separate group.

Csomós et al. (11) distinguished Hungarian red and white
wines from the same geographic origin and vintage using
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CA and PCA on the basis of biogenic amines and polyphenols.
Variables not necessary for classification were determined.
Patterns for red and white wine groupings were observed.

The aim of the present work was to apply chemometric
techniques to classify Hungarian white and red wines according
to wine-making technology, geographic origin (wine-making
region), grape variety, and year of vintage on the basis of free
amino acid and biogenic amine contents. Moreover, we hope
to determine which compounds (free amino acids and biogenic
amines) are responsible for an appropriate classification.

MATERIALS AND METHODS

Wine Samples.Altogether 187 Hungarian wines (113 white and
74 red wines) were investigated. The wines represented four groups
according to wine-making technology: quality white wines (N ) 101),
white liquor wines (N ) 12), quality red wines (N ) 71), and red wines
with barrique aging (N ) 3). White wines originated from 18 wine-
making regions [AÄ szár-Neszme´ly ) 1, Badacsony) 2, Balatonfüred-
Csopak) 3, Balaton-North) 4, Bükkalja) 5, Balaton-South) 6,
Eger) 7, Etyek-Buda) 8, Kunság ) 9, Mátraalja) 10, Mecsekalja
) 11, Pannonhalma-Sokoróalja) 12, Somló) 13, Szeksza´rd ) 14,
Tokajhegyalja) 15, Tokajhegyalja (liquor wines)) 16, Tolna) 17,
Villány ) 18]; 19 varieties (5-butts Aszú) 1, 6-butts Aszú) 2,
Szamorodni) 3, Chardonnay) 4, Furmint) 5, Hárslevelu_) 6, Irsai
Olivér ) 7, Királyleányka) 8, Leányka) 9, Muscat Ottonel) 10,
Olaszrizling) 11, Pinot Blanc) 12, Rajnai Rizling) 13, Rizling-
szilváni ) 14, Sárgamuskota´ly ) 15, Sauvignon Blanc) 16,
Szürkebara´t ) 17, Tramini) 18, Zöldveltelini) 19); and 9 years of
vintage (1993, 1994, 1996, 1997, 1998, 1999, 2000, 2001, 2002),
whereas red wines originated from 10 wine-making regions (Csongra´d,
) 1 Balaton-South) 2, Eger) 3, Hajós-Baja) 4, Kunság ) 5,
Mátraalja) 6, Sopron) 7, Szeksza´rd ) 8, Tolna) 9, Villány ) 10),
9 varieties (Bikave´r ) 1, Cabernet Franc) 2, Cabernet Sauvignon)
3, Kadarka) 4, Kékfrankos) 5, Kékoportó) 6, Merlot ) 7, Pinot
Noir ) 8, Zweigelt) 9); and 6 years of vintage (1994, 1997, 1999,
2000, 2001, 2002).

Sample Preparation.Free amino acids after a 0.45µm membrane
filtration and dilution 2 times were directly determined by an amino
acid analyzer. For the determination of biogenic amines, from 15 to
20 cm3 of the samples the water was evaporated at 80°C. The
evaporated samples were diluted in 1.5-5 cm3 of sodium citrate buffer.
The samples were subjected to a 2 min centrifugation at 8000 rpm
and, finally, they were analyzed by the amino acid analyzer.

Chromatographic Conditions. Determination of free amino acids
and biogenic amines was accomplished by ion-exchange chromatog-
raphy. Separation of free amino acids was solved with two amino acid
analyzers: LC 3000 (Biotronik) and AAA 400 (Ingos). Chromatography
of biogenic amines was performed with the AAA 400 instrument. Both
free amino acids and biogenic amines were separated by stepwise
gradient elution using sodium/potassium citrate buffer systems. Post-
column derivatization with ninhydrin reagent and spectrophotometric
measurement at 570 and 440 nm was used for determination of free
amino acids and biogenic amines (12).

Principal Component Analysis.PCA is a projection method, and
dimension reduction of the data can be achieved using a smaller number
of principal components than original variables. The principal com-
ponents are often called underlying components, and their values are
the scores. The principal components are, in fact, linear combinations
of the original variables. The linear coefficients of the inverse relation
of linear combinations are called the component loadings, that is, the
correlation coefficients between the original variables and the principal
components. PCA is an unsupervised method of pattern recognition in
the sense that no grouping of the data has to be known before the
analysis. Still, the data structure can be revealed easily and class
membership is easy to assign.

The principal components are uncorrelated and account for the total
variance of the original variables. The first principal component (PC1)
accounts for the maximum of the total variance, the second (PC2) is
uncorrelated with the first one and accounts for the maximum of the

residual variance, and so on, until the total variance is accounted for.
For practical reasons, it is sufficient to retain only those components
that account for a large percentage of the total variance.

In summary, PCA decomposes the original matrix into multiplication
of loading (amino acids and biogenic amines) and score (wine sorts)
matrices. PCA will show which kinds of amino acids and biogenic
amines (and which sorts of wines) are similar to each other, that is,
carry comparable information, and which one is unique. The algorithm
of PCA can be found in standard chemometric articles and textbooks
(13, 14).

Linear Discriminant Analysis (LDA). LDA is perhaps the most
frequently used pattern recognition technique. LDA is supervised; that
is, the class membership has to be known for the analysis. LDA,
similarly to PCA, can be considered as a dimension reduction method.
For feature reduction, we need to determine a smaller dimension
hyperplane on which the points will be projected from the higher
dimension space. Whereas PCA selects a direction that retains maximal
structure in a lower dimension among the data, LDA selects a direction
that achieves maximum separation among the given classes. The latent
variable obtained in this way is a linear combination of the original
variables. This function is called the canonical variate, and its values
are the roots. If we havek classes,k - 1 canonical variates can be
determined. In the method of LDA a linear function of the variables is
to be sought, which maximizes the ratio of between-class variance and
minimizes the ratio of within-class variance. Finally, a percentage of
correct classification is given. A variant of this method is the stepwise
discriminant analysis that permits the variables with a major discrimi-
nant capacity to be selected. The description of the LDA algorithm
can be found in references14-16.

RESULTS AND DISCUSSION

Principal Component Analysis.The following data set was
analyzed: the concentrations of the following 28 components
(columns of the input matrix) were ordered as variables
(abbreviations in parentheses): 8 biogenic amines [histamine
(Him), tyramine (Tym), putrescine (Put), cadaverine (Cad),
agmatine (Agm), spermidine (Spd), spermine (Spm), sum of
biogenic amines (sum BA)] and 20 amino acids [aspartic acid
(Asp), threonine (Thr), serine (Ser), glutamic acid (Glu), proline
(Pro), glycine (Gly), alanine (Ala), cysteine (Cys), valine (Val),
methionine (Met), isoleucine (Ile), leucine (Leu), tyrosine (Tyr),
phenylalanine (Phe),γ-aminobutyric acid (GABA), histidine
(His), ornithine (Orn), lysine (Lys), arginine (Arg), sum of amino
acids (sum AA)]. The 187 wines were arranged in rows of the
input matrix. The variables (columns) were standardized to zero
mean and unit variance; that is, column means were subtracted
from each matrix entry, and then each entry was divided by
standard deviations of columns.

PCA yields six principal components explaining>77% of
the total variance in the data. Loading values>+0.65 and
<-0.65 are marked in boldface type (PC1 and PC2 inTable
1). The loadings express how well the new PCs correlate with
the old variables. The first PC, which explains 44.8% of the
total variance, correlates negatively with all amino acids. The
second PC (11.8% of the total variance) correlates positively
with biogenic amines Put, sum BA, and amino acid Pro. In the
remaining PC3, PC4, PC5, and PC6 none of the variables were
decisive. If we consider the high correlations (loading values
are>+0.65 and<-0.65), two PCs are enough to be retained.
A scree plot suggests involving four PCs into the model. As a
reasonable compromise four PCs are given inTable 1.

Figure 1 shows the first two PC loadings against each other.
Three different clusters can be observed inFigure 1; they are
separated with curves. The first cluster (I) is formed by the
majority of amino acids. Agm, Orn, Cys, Tym, sum AA, and
Gly belong to the second cluster (II). The third cluster contains
five biogenic amines, sum AA, and the amino acid Pro (III).

8056 J. Agric. Food Chem., Vol. 51, No. 27, 2003 Héberger et al.



Score plots show similarities among the different wine sorts.
Figure 2 shows the first two PC scores against each other.

Wines made by different wine-making technologies show good
separation. The points for quality red wines are situated above
those for quality white wines. Three points of red wines with

Table 1. Unrotated Principal Component Loadings for Free Amino
Acids and Biogenic Aminesa

PC1 PC2 PC3 PC4

Him −0.1399 0.5606 0.0319 0.4966
Tym −0.5950 0.3769 −0.4871 0.1521
Put 0.0169 0.7955 0.2563 0.1375
Cad 0.0757 0.4113 0.2204 0.0279
Agm −0.1648 −0.1086 −0.1318 0.4719
Spd −0.1501 0.6025 0.1408 −0.0289
Spm −0.0309 0.1839 0.1845 −0.0530
sum BA −0.4718 0.7207 −0.2275 0.4003
Asp −0.9197 −0.0301 −0.1300 0.0257
Thr −0.9258 −0.0811 0.0011 0.0016
Ser −0.9480 −0.0756 0.0545 −0.0199
Glu −0.8455 −0.0874 0.0508 −0.2358
Pro −0.0167 0.6679 0.3722 −0.3381
Gly −0.8261 0.3004 0.0121 −0.2234
Ala −0.8970 −0.0195 −0.0374 −0.2324
Cys −0.5842 0.2990 −0.2983 −0.1481
Val −0.9300 −0.0458 0.1531 0.0540
Met −0.7507 −0.2277 0.2793 0.1564
Ile −0.8820 −0.2105 0.2178 0.1233
Leu −0.7850 −0.3047 0.2226 0.2420
Tyr −0.5807 −0.0945 0.5599 −0.1387
Phe −0.8217 −0.2065 0.3496 0.0046
GABA −0.7321 −0.0553 −0.3951 −0.1074
His −0.7581 −0.1742 0.0257 0.1514
Orn −0.3694 0.1207 −0.3474 −0.5148
Lys −0.7648 −0.0801 −0.0212 0.3863
Arg −0.7031 −0.1237 −0.4666 −0.0360
sum AA −0.7712 0.3821 0.0457 −0.3157

explained variance 12.55 3.29 1.86 1.64
proportion of total variance, % 44.84 11.76 6.64 5.87

a PC, principal component; Him, histamine; Tym, tyramine; Put, putrescine; Cad,
cadaverine; Agm, agmatine; Spd, spermidine; Spm, spermine; sum BA, sum of
biogenic amines; Asp, aspartic acid; Thr, threonine; Ser, serine; Glu, glutamic acid;
Pro, proline; Gly, glycine; Ala, alanine; Cys, cysteine; Val, valine; Met, methionine;
Ile, isoleucine; Leu, leucine; Tyr, tyrosine; Phe, phenylalanine; GABA, γ-aminobutyric
acid; His, histidine; Orn, ornithine; Lys, lysine; Arg, arginine; sum AA, sum of amino
acids.

Figure 1. Principal component loadings, loading 1 versus loading 2. Him,
histamine; Tym, tyramine; Put, putrescine; Cad, cadaverine; Agm,
agmatine; Spd, spermidine; Spm, spermine; SumBA, sum of biogenic
amines; Asp, aspartic acid; Thr, threonine; Ser, serine; Glu, glutamic acid;
Pro, proline; Gly, glycine; Ala, alanine; Cys, cysteine; Val, valine; Met,
methionine; Ile, isoleucine; Leu, leucine; Tyr, tyrosine; Phe, phenylalanine;
GABA, γ-aminobutyric acid; His, histidine; Orn, ornithine; Lys, lysine; Arg,
arginine; SumAA, sum of amino acids.

Figure 2. Principal component scores, score 1 versus score 2. QWW,
quality white wines; QRW, quality red wines; WLW, white liquor wines;
RWB, red wines with barrique aging.

Figure 3. Principal component scores, score 1 versus score 3. QWW,
quality white wines; QRW, quality red wines; WLW, white liquor wines;
RWB, red wines with barrique aging.

Figure 4. Principal component scores, score 2 versus score 3. QWW,
quality white wines; QRW, quality red wines; WLW, white liquor wines;
RWB, red wines with barrique aging.
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barrique aging are situated above the majority of points for red
wines. White liquor wines seem to form a separate group on
the left of other wines. Both quality white and quality red wines
form a comet-like shape.

The distinction between wines made by different wine-making
technologies is also shown inFigures 3 and 4 (PC1 vs PC3
and PC2 vs PC3, respectively). Quality white wines are mixed
with quality red wines. The separation of the 12 white liquor
wines and 3 red wines with barrique aging is acceptable.

Linear Discriminant Analysis. Stepwise LDA was used for
differentiation of different wine sorts using the same data set
as for PCA.

Correct classification concerning white and red wines is
94.7%. This classification was achieved using the following 12
variables: Put, Asp, Thr, Ser, Pro, Gly, Ala, Cys, Val, Leu,
Tyr, and GABA. The classification of white wines (96.5%) is
better than that of red ones (91.9%).

Table 2 shows the classification of wines made by different
wine-making technologies. Twenty of the variables, Tym, Put,
Cad, Spd, Spm, Asp, Thr, Ser, Glu, Pro, Gly, Ala, Cys, Met,
Leu, Tyr, Phe, GABA, Orn, and Lys, showed high discriminant
power. The percentage of correctly classified wines with these
variables is 94.7%. The classification of the three red wines
with barrique aging is correct.

In Figures 5, 6, and 7 the groupings of wines made by
different wine-making technologies are shown. InFigures 5
and 6 (root 1 vs root 2 and root 1 vs root 3, respectively)
different wine sorts show an acceptable separation. Although
wines made by different wine-making technologies are mixed
in Figure 7 (root 2 vs root 3), red wines with barrique aging
form a separate group in this projection.

Linear Discriminant Analysis II. Stepwise LDA was also
used for differentiation of white and red wines according to
geographic origin (wine-making region), grape variety, and year
of vintage. Red and white wines were handled separately. A
10% significance level was predefined. Those variables were
excluded, which surpassed the predefined significance limit. In
such a way, a more realistic, but worse classification can be
obtained than when using all variables.

Although Figure 8 shows the best two roots, the groups
overlap to a large extent. The mentioned classification can be
achieved multidimensionally, for example, using all 14 roots.

The following variables have the highest discrimination power
for differentiation of geographic regions (18 white wine groups)
at the 10% significance level: Ile, Ala, Leu, Tym, Pro, Tyr,
Met, Asp, Glu, Phe, Gly, Thr, GABA, and His (ordering in
decreasing significance). The correct classification was 70.8%.

Figure 9 shows overlapping groups, although Tokaj liquor
wines are easy to discriminate from other sorts. It is difficult to
classify white wines according to varieties (worst classification).

The stepwise forward selection algorithm has selected the
following variables for differentiation of white wine varieties
(19 white wine groups) at the 10% significance level: Lys, Pro,
Leu, Tym, Orn, Him, Ala, Thr, His, Agm, Gly, GABA, Glu,
and Ser (ordering in decreasing significance).

Table 2. Percentage of Correctly Classified Wines Using Linear
Discriminant Analysis of Wines Made by Different Wine-Making
Technologies

predicted groupsaobserved
groupa

no. of
samples

correct
classification, % QWW QRW WLW RWB

QWW 101 97.0 98 3 0 0
QRW 71 91.5 6 65 0 0
WLW 12 91.7 1 0 11 0
RWB 3 100.0 0 0 0 3
total 187 94.7 105 68 11 3

a QWW, quality white wines; QRW, quality red wines; WLW, white liquor wines;
RWB, red wines with barrique aging.

Figure 5. LDA of wines according to wine-making technology, root 1
versus root 2. QWW, quality white wines; QRW, quality red wines; WLW,
white liquor wines; RWB, red wines with barrique aging.

Figure 6. LDA of wines according to wine-making technology, root 1
versus root 3. QWW, quality white wines; QRW, quality red wines; WLW,
white liquor wines; RWB, red wines with barrique-aging.

Figure 7. LDA of wines according to wine-making technology, root 2
versus root 3. QWW, quality white wines; QRW, quality red wines; WLW,
white liquor wines; RWB, red wines with barrique aging.
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Using all roots (14) the correct classification achieved 62.4%.
Figure 10 shows the ambiguity of classification task: for

example, year of vintage 1999 can be distinguished from the
year 1997 or 1993, whereas years 2001 and 2000 are indistin-
guishable.

The stepwise forward selection algorithm has selected the
following variables for differentiation of years of vintage (nine
white wine groups) at the 10% significance level: Spm, Thr,
His, Met, Tyr, Gly, Cys, Leu, Asp, GABA, Spd, Lys, Ala, and
Put (ordering in decreasing significance). Using all roots (eight)
the correct classification achieved 73.5%.

AlthoughFigure 11shows a considerable overlap among the
groups of wine-making regions (10 red wine groups), no doubt
several discrimination tasks can be solved fully: for example,
regions Villány (10) and Sopron (7) are clearly distinguished.
Similarly, even geographically close regions can be separated,
for example, Hajós-Baja (4) and Kunság (5). Although clouds
of the points for Kunság (5) and Villány (10) touch each other,
the majority of points are well-separable. A 64.9% separation
can be achieved using all roots (nine) combined from the
following variables: Orn, Glu, Pro, sum AA, Cys, Tyr, Arg,
Gly, Spd, and Ala (in decreasing significance).

The roots having the best discrimination power in the case
of red wine varieties are plotted inFigure 12. The overlapping
is again a typical feature for the points of groups. Nevertheless,
several discriminations of groups can immediately be seen: for
example, Merlot (7) and Zweigelt (9) are easy to distinguish.
Points for Bikavér and Kékfrankos cover the points of other
sorts, although five points of Kékfrankos are separated clearly.

The stepwise forward selection algorithm has selected the
following variables for differentiation of red wine varieties (nine

Figure 8. LDA of white wines according to geographic origin, root 1 versus
root 2. See text for wine sample numbering.

Figure 9. LDA of white wines according to wine varieties, root 1 versus
root 2. See text for wine sample numbering.

Figure 10. LDA of the year of vintage for white wines, root 1 versus root
2. Years are represented by the last two digits.

Figure 11. LDA of red wines according to geographic origin, root 1 versus
root 2. See text for wine sample numbering.

Figure 12. LDA of red wines according to wine varieties, root 1 versus
root 2. See text for wine sample numbering.
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red wine groups) at the 10% significance level: Cad, Orn, Asp,
Ala, Ile, Gly, sum AA, Pro, Tym, GABA, and Val (ordering in
decreasing significance). Using all roots (eight) the correct
classification achieved 71.6%.

Figure 13 shows the best discrimination of years of vintage
(six red wine groups). Again, points for some years overlap
(e.g., 2000 and 2001), whereas points for other years are clearly
separated (e.g., 2002 and 1994). The stepwise forward selection
algorithm has selected the following variables for differentiation
of years of vintage for six red wine groups at the 10%
significance level: His, Spm, Ser, Cys, Thr, Ile, Tym, Sum AA,
Leu, Pro, Tyr, Arg, Gly, Lys, Him, and Met (ordering in
decreasing significance). Using all roots (five) the correct
classification achieved 82.4%

Ala, GABA Gly, His, Leu, and Thr are all important for the
classification of white wines (in all aspects: wine-making
region, variety, and year of vintage). Similarly, Gly, Pro, and
sum AA are important for the classification of red wines.

There is no general trend in classification: the region is better
distinguishable for white wines, whereas the varieties and years
can be better ordered to red wines.

PCA gives an acceptable differentiation between white and
red wines and also between wines made by different wine-
making technologies.

Using LDA wine-making technology had a greater effect on
classification of wines than geographic origin (wine-making
region), grape variety, and year of vintage.

In summary, on the basis of the results of chemometric
analyses, free amino acid and biogenic amine contents seem to
be useful to differentiate wines according to wine-making
technology and, although to a lesser extent, geographic origin,
grape variety, and year of vintage, too.
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Figure 13. LDA of the year of vintage for red wines, root 1 versus root
2. Years are represented by the last two digits. Points for some years
overlap (e.g., 2000 and 2001), whereas points for other years are clearly
separated (e.g., 2002 and 1994).
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